Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.753
Filtrar
1.
Cells ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38607008

RESUMO

PURPOSE OF THIS REVIEW: Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS: Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY: The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.


Assuntos
Nanomedicina , Traumatismos da Medula Espinal , Humanos , Distribuição Tecidual , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Medicina Regenerativa
2.
Rev. esp. cir. ortop. traumatol. (Ed. impr.) ; 68(2): 151-158, Mar-Abr. 2024. ilus, graf, tab
Artigo em Espanhol | IBECS | ID: ibc-231897

RESUMO

Introducción: La lesión medular tipo SCIWORA es una entidad clínica con baja incidencia y alta repercusión funcional. El objetivo del estudio es la descripción epidemiológica de esta lesión y su evolución funcional con un seguimiento medio de 10 años. Material y métodos: Estudio analítico, longitudinal, de cohortes ambispectivo. Fueron evaluados 13 pacientes con el diagnóstico de SCIWORA en el periodo de estudio 2001-2022. Variables evaluadas: edad, sexo, días hasta la lesión medular, causa de lesión, imagen medular en la RM postraumatismo, nivel neurológico de lesión, ASIA ingreso/alta/5 años, SCIM III ingreso/alta/3 años, tipo de tratamiento empleado, empleo de terapia NASCIS III ingreso, tiempo de hospitalización, seguimiento medio. En octubre del 2022 fueron nuevamente evaluados en consultas externas mediante: cuestionario de discapacidad cervical (NDI)/Oswestry y cuestionario de calidad de vida validado en castellano para lesionados medulares (SV-QLI/SCI). Resultados: La mediana de edad fue de 4 años, 77% varones. El 54% de las lesiones corresponden a nivel cervical. El ASIA al ingreso fue del 31% A y del 31% C, nivel neurológico: C2 (22%) y T10 (15%), tráfico como causa de lesión (77%), SCIM III ingreso/alta: 28,5/42. La estancia media hospitalaria fue de 115 días. NDI: 11,6 y Oswestry: 15,3. Conclusión: El 77% de los SCIWORA se producen en menores de 8 años. Al año del alta hospitalaria un 31% de los pacientes fueron catalogados como ASIA D y a los 5 años el porcentaje se mantiene constante. No se encontraron diferencias significativas entre la causa de la lesión y tipo de alteración en RM (p = 0,872), ni entre la edad y el tipo de lesión medular objetivada en RM (p = 0,149).(AU)


Introduction: SCIWORA has a low incidence but a high functional repercussion. The aim of the present study was to characterize the epidemiology of this clinical-radiological condition and evaluate functional outcome with a mean of 10-years follow-up. Material and methods: Observational, longitudinal ambispective cohort study. Thirteen SCIWORA patients were admitted in the study period. Demographics, mechanism of injury, spinal cord MRI findings, neurological level of injury, time to SCI, neurological status (AIS) at admission/discharge/5 years, spinal cord independence measure (SCIM III) scale at admission and discharge, hospital length of stay and mean follow-up were recorded. On October 2022 patients were re-evaluated using NDI, Oswestry, and SV-QLI/SCI. Results: Median age was 4 years. The study population for this investigation was mostly men (77%). 54% of level of injury correspond to cervical spine. AIS at admission was A (31%) and C (31%). Neurological level of injury was C2 (22%) and T10 (15%). Motor vehicle-related injury was the most prevalent mechanism of injury (77%), SCIM III scale at admission and discharge: 28.5/42, hospital length of stay was 115 days. The NDI was 11.6, Oswestry: 15.3 and SV-QLI/SCI: 17. Conclusions: Seventy-seven percent of SCIWORA patients was detected under 8 years-old. At 1 year follow-up after discharge 31% patients were AIS grade D and with 5 years follow-up the percentage remain constant. No statistically significant differences in the mechanism of injury and MRI findings (P = 0.872), age and MRI spinal cord findings (P = 0.149) were found in SCIWORA patients.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Traumatologia , Estudos Longitudinais , Estudos de Coortes , Pediatria
3.
Medicine (Baltimore) ; 103(16): e37865, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640259

RESUMO

BACKGROUND: There has been growing interest in using the traditional Chinese herb Buyang Huanwu Decoction (BHD) as a potential treatment for spinal cord injury (SCI), owing to its long-used treatment for SCI in China. However, the efficacy and safety of BHD treatment for SCI remain widely skeptical. This meta-analysis aims to assess the safety and efficacy of BHD in managing SCI. METHOD: A comprehensive literature search was conducted across several databases, including PubMed, EMBASE, Cochrane Library, CNKI, Wanfang, VIP, and Sinomed, up to January 1, 2024. Randomized controlled clinical trials evaluating the safety or efficacy of BHD in SCI treatment were included. The analysis focused on 8 critical endpoints: Patient-perceived total clinical effective rate, American Spinal Cord Injury Association (ASIA) sensory score, ASIA motor score, somatosensory evoked potential, motor evoked potential, visual analog scale pain score, Japanese Orthopaedic Association score, and adverse events. RESULTS: Thirteen studies comprising 815 participants met the inclusion criteria. No significant heterogeneity or publication bias was observed across the trials. The findings revealed significant improvements in the patient-perceived total clinical effective rate (OR = 3.77; 95% confidence interval [CI] = [2.43, 5.86]; P < .001), ASIA sensory score (mean difference [MD] = 8.22; 95% CI = [5.87, 10.56]; P < .001), ASIA motor score (MD = 7.16; 95% CI = [5.15, 9.18]; P < .001), somatosensory evoked potential (MD = 0.25; 95% CI = [0.03, 0.48]; P = .02), motor evoked potential (MD = 0.30; 95% CI = [0.14, 0.46]; P = .0002), and Japanese Orthopaedic Association score (MD = 1.99; 95% CI = [0.39, 3.58]; P = .01) in the BHD combination group compared to the control group. Additionally, there was a significant reduction in visual analog scale pain scores (MD = -0.81; 95% CI = [-1.52, -0.11]; P = .02) with BHD combination treatment, without a significant increase in adverse effects (OR = 0.68; 95% CI = [0.33, 1.41]; P = .3). CONCLUSION: The current evidence suggests that BHD is effective and safe in treating SCI, warranting consideration as a complementary and alternative therapy. However, given the low methodological quality of the included studies, further rigorous research is warranted to validate these findings.


Assuntos
Medicamentos de Ervas Chinesas , Traumatismos da Medula Espinal , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Medicamentos de Ervas Chinesas/efeitos adversos , Traumatismos da Medula Espinal/tratamento farmacológico , Dor/tratamento farmacológico
4.
ACS Appl Mater Interfaces ; 16(15): 18551-18563, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564314

RESUMO

High levels of reactive oxygen species (ROS) are known to play a critical role in the secondary cascade of spinal cord injury (SCI). The scavenging of ROS has emerged as a promising approach for alleviating acute SCI. Moreover, identifying the precise location of the SCI site remains challenging. Enhancing the visualization of the spinal cord and improving the ability to distinguish the lesion site are crucial for accurate and safe treatment. Therefore, there is an urgent clinical need to develop a biomaterial that integrates diagnosis and treatment for SCI. Herein, ultra-small-sized gold nanodots (AuNDs) were designed for dual-mode imaging-guided precision treatment of SCI. The designed AuNDs demonstrate two important functions. First, they effectively scavenge ROS, inhibit oxidative stress, reduce the infiltration of inflammatory cells, and prevent apoptosis. This leads to a significant improvement in SCI repair and promotes a functional recovery after injury. Second, leveraging their excellent dual-mode imaging capabilities, the AuNDs enable rapid and accurate identification of SCI sites. The high contrast observed between the injured and adjacent uninjured areas highlights the tremendous potential of AuNDs for SCI detection. Overall, by integrating ROS scavenging and dual-mode imaging in a single biomaterial, our work on functionalized AuNDs provides a promising strategy for the clinical diagnosis and treatment of SCI.


Assuntos
Ouro , Traumatismos da Medula Espinal , Humanos , Espécies Reativas de Oxigênio , Ouro/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Estresse Oxidativo , Materiais Biocompatíveis/uso terapêutico
5.
Int J Med Sci ; 21(4): 725-731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464830

RESUMO

Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.


Assuntos
Axônios , Traumatismos da Medula Espinal , Humanos , Axônios/metabolismo , Histonas/metabolismo , Acetilação , Regeneração Nervosa , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapêutico
6.
Neurosurg Rev ; 47(1): 132, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546884

RESUMO

This systematic review aims to summarize the findings from all clinical randomized trials assessing the efficacy of potential neuroprotective agents in influencing the outcomes of acute spinal cord injuries (SCI). Following the PRISMA guidelines, we conducted comprehensive searches in four electronic databases (PubMed, Scopus, Cochrane Library, and Web of Science) up to September 5th, 2023. Our analysis included a total of 30 studies. We examined the effects of 15 substances/drugs: methylprednisolone, tirilazad mesylate, erythropoietin, nimodipine, naloxone, Sygen, Rho protein antagonist, granulocyte colony-stimulating factor, autologous macrophages, autologous bone marrow cells, vitamin D, progesterone, riluzole, minocycline, and blood alcohol concentration. Notable improvements in neurological outcomes were observed with progesterone plus vitamin D and granulocyte colony-stimulating factor. In contrast, results for methylprednisolone, erythropoietin, Sygen, Rho Protein, and Riluzole were inconclusive, primarily due to insufficient sample size or outdated evidence. No significant differences were found in the remaining evaluated drugs. Progesterone plus vitamin D, granulocyte colony-stimulating factor, methylprednisolone, Sygen, Rho Protein, and Riluzole may enhance neurological outcomes in acute SCI cases. It is worth noting that different endpoints or additional subgroup analyses may potentially alter the conclusions of individual trials. Therefore, certain SCI grades may benefit more from these treatments than others, while the overall results may remain inconclusive.


Assuntos
Eritropoetina , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Humanos , Fármacos Neuroprotetores/uso terapêutico , Riluzol/uso terapêutico , Concentração Alcoólica no Sangue , Progesterona/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Metilprednisolona/uso terapêutico , Eritropoetina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Vitamina D/uso terapêutico
7.
ACS Chem Neurosci ; 15(7): 1456-1468, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38472087

RESUMO

Spinal cord injury (SCI) treatment remains a major challenge. Spinal motor neurons (MNs) are seriously injured in the early stage after SCI, but this has not received sufficient attention. Oxidative stress is known to play a crucial role in SCI pathology. Our studies demonstrated that oxidative stress can cause severe damage to the cytoskeleton of spinal MNs. Docosahexaenoic acid (DHA) has been shown to have beneficial effects on SCI, but the mechanism remains unclear, and no study has investigated the effect of DHA on oxidative stress-induced spinal MN injury. Here, we investigated the effect of DHA on spinal MN injury through in vivo and in vitro experiments, focusing on the cytoskeleton. We found that DHA not only promoted spinal MN survival but, more importantly, alleviated the severe cytoskeletal destruction of these neurons induced by oxidative stress in vitro and in mice with SCI in vivo. In addition, the mechanisms involved were investigated and elucidated. These results not only suggested a beneficial role of DHA in spinal MN cytoskeletal destruction caused by oxidative stress and SCI but also indicated the important role of the spinal MN cytoskeleton in the recovery of motor function after SCI. Our study provides new insights for the formulation of SCI treatment.


Assuntos
Ácidos Docosa-Hexaenoicos , Traumatismos da Medula Espinal , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Neurônios Motores , Estresse Oxidativo , Citoesqueleto , Medula Espinal
8.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528569

RESUMO

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Assuntos
Ácidos Cafeicos , Doenças Mitocondriais , Álcool Feniletílico , Traumatismos da Medula Espinal , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metilprednisolona/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Álcool Feniletílico/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Dinaminas/efeitos dos fármacos
9.
Toxicol Appl Pharmacol ; 484: 116872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428465

RESUMO

Previous studies have demonstrated that tetramethylpyrazine (TMP) can enhance the recovery of motor function in spinal cord injury (SCI) rats. However, the underlying mechanism involved in this therapeutic effect remains to be elucidated. We conducted RNA sequencing with a network pharmacology strategy to predict the targets and mechanism of TMP for SCI. The modified Allen's weight-drop method was used to construct an SCI rat model. The results indicated that the nuclear transfer factor-κB (NF-κB) pathway was identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and an inflammatory response was identified through the Gene Ontology (GO) enrichment analysis. Tumor necrosis factor (TNF) was identified as a crucial target. Western blotting revealed that TMP decreased the protein expression of TNF superfamily receptor 1 (TNFR1), inhibitor κB-α (IκB-α), and NF-κB p65 in spinal cord tissues. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) demonstrated that TMP inhibited TNF-α, interleukin-1ß (IL-1ß), reactive oxygen species (ROS), and malondialdehyde (MDA) expression and enhanced superoxide dismutase (SOD) expression. Histopathological observation and behavior assessments showed that TMP improved morphology and motor function. In conclusion, TMP inhibits inflammatory response and oxidative stress, thereby exerting a neuroprotective effect that may be related to the regulation of the TNFR1/IκB-α/NF-κB p65 signaling pathway.


Assuntos
NF-kappa B , Pirazinas , Traumatismos da Medula Espinal , Animais , Ratos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Pirazinas/farmacologia , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo
10.
ACS Nano ; 18(12): 8934-8951, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483284

RESUMO

Spinal cord injury is a disease that causes severe damage to the central nervous system. Currently, there is no cure for spinal cord injury. Azithromycin is commonly used as an antibiotic, but it can also exert anti-inflammatory effects by down-regulating M1-type macrophage genes and up-regulating M2-type macrophage genes, which may make it effective for treating spinal cord injury. Bone mesenchymal stem cells possess tissue regenerative capabilities that may help promote the repair of the injured spinal cord. In this study, our objective was to explore the potential of promoting repair in the injured spinal cord by delivering bone mesenchymal stem cells that had internalized nanoparticles preloaded with azithromycin. To achieve this objective, we formulated azithromycin into nanoparticles along with a trans-activating transcriptional activator, which should enhance nanoparticle uptake by bone mesenchymal stem cells. These stem cells were then incorporated into an injectable hydrogel. The therapeutic effects of this formulation were analyzed in vitro using a mouse microglial cell line and a human neuroblastoma cell line, as well as in vivo using a rat model of spinal cord injury. The results showed that the formulation exhibited anti-inflammatory and neuroprotective effects in vitro as well as therapeutic effects in vivo. These results highlight the potential of a hydrogel containing bone mesenchymal stem cells preloaded with azithromycin and trans-activating transcriptional activator to mitigate spinal cord injury and promote tissue repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Azitromicina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Anti-Inflamatórios/farmacologia
11.
Biomater Adv ; 159: 213837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522310

RESUMO

Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Humanos , Hidrogéis/uso terapêutico , Poloxâmero/química , Poloxâmero/uso terapêutico , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Heparina/farmacologia , Heparina/química , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico
12.
Biomacromolecules ; 25(4): 2607-2620, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530873

RESUMO

Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.


Assuntos
Nanopartículas , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Humanos , Riluzol/farmacologia , Riluzol/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Ácido Glutâmico , Inflamação/tratamento farmacológico , Medula Espinal
13.
Int Immunopharmacol ; 131: 111868, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493692

RESUMO

Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr4+ cations can regulate the deposition and nucleation behavior of Zn2+ in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn2+ be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.


Assuntos
Ferrocianetos , Chumbo , Traumatismos da Medula Espinal , Ratos , Animais , Chumbo/farmacologia , Chumbo/uso terapêutico , Zircônio/uso terapêutico , Zircônio/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Inflamação/tratamento farmacológico , Zinco/uso terapêutico , Zinco/farmacologia
14.
Int J Biol Macromol ; 263(Pt 2): 130333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408580

RESUMO

The cystic cavity that develops following spinal cord injury is a major obstacle for repairing spinal cord injury (SCI). The injectable self-healing biomaterials treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury. Herein, a natural extracellular matrix (ECM) biopolymer hyaluronic acid-based hydrogel was developed based on multiple dynamic covalent bonds. The hydrogels exhibited excellent injectable and self-healing properties, could be effectively injected into the injury site, and filled the lesion cavity to accelerate the tissue repair of traumatic SCI. Moreover, the hydrogels were compatible with cells and various tissues and possessed proper stiffness matched with nervous tissue. Additionally, when implanted into the injured spinal cord site, the hyaluronic acid-based hydrogel promoted axonal regeneration and functional recovery by accelerating remyelination, axon regeneration, and angiogenesis. Overall, the injectable self-healing hyaluronic acid-based hydrogels are ideal biomaterials for treating traumatic SCI.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Axônios/patologia , Hidrogéis/química , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Materiais Biocompatíveis/farmacologia
15.
Biomacromolecules ; 25(3): 1592-1601, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38377534

RESUMO

Spinal cord injuries (SCI) have devastating physical, psychological, and psychosocial consequences for patients. One challenge of nerve tissue repair is the lack of a natural extracellular matrix (ECM) that guides the regenerating axons. Hyaluronic acid (HA) is a major ECM component and plays a fundamental role in facilitating lesion healing. Herein, we developed HA-based adhesive hydrogels by modification of HA with dopamine, a mussel-inspired compound with excellent adhesive properties in an aqueous environment. The hydrogels were loaded with the anti-inflammatory drug ibuprofen and the response of neuronal cells (SH-SY5Y) was evaluated in terms of viability, morphology, and adhesion. The obtained results suggested that the developed materials can bridge lesion gaps, guide axonal growth, and simultaneously act as a vehicle for the delivery of bioactive compounds.


Assuntos
Neuroblastoma , Traumatismos da Medula Espinal , Humanos , Ácido Hialurônico , Hidrogéis , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Neurônios/patologia , Medula Espinal/patologia
16.
ACS Nano ; 18(10): 7346-7362, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38416031

RESUMO

The microenvironment after traumatic spinal cord injury (SCI) involves complex pathological processes, including elevated oxidative stress, accumulated reactive aldehydes from lipid peroxidation, excessive immune cell infiltration, etc. Unfortunately, most of current neuroprotection therapies cannot cope with the intricate pathophysiology of SCI, leading to scant treatment efficacies. Here, we developed a facile in situ reaction-induced self-assembly method to prepare aldehyde-scavenging polypeptides (PAH)-curcumin conjugate nanoassemblies (named as PFCN) for combined neuroprotection in SCI. The prepared PFCN could release PAH and curcumin in response to oxidative and acidic SCI microenvironment. Subsequently, PFCN exhibited an effectively neuroprotective effect through scavenging toxic aldehydes as well as reactive nitrogen and oxygen species in neurons, modulating microglial M1/M2 polarization, and down-regulating the expression of inflammation-related cytokines to inhibit neuroinflammation. The intravenous administration of PFCN could significantly ameliorate the malignant microenvironment of injured spinal cord, protect the neurons, and promote the motor function recovery in the contusive SCI rat model.


Assuntos
Curcumina , Traumatismos da Medula Espinal , Ratos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Aldeídos/metabolismo , Aldeídos/farmacologia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal
17.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 213-218, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372091

RESUMO

Neuroinflammation induced by microglia following spinal cord injury (SCI) leads to secondary neurologic injury. Androgens including testosterone and dihydrotestosterone (DHT) show as endogenous neuroprotective factors against multiple neurologic diseases, while their therapeutic role in SCI-induced neuroinflammation and underlying mechanism remains elusive. In the study, we aimed to investigate the role of DHT against microglia-induced neuroinflammation in SCI and evaluate its protective treatment. BV2 cells were activated by neuroinflammation via LPS in vitro. Adult male C57BL/6 mice were used to establish the SCI model. BV2 cells and SCI mice were administrated DHT. Microglia activation, pro-inflammatory factors, p38 and p65 phosphorylation, glial scar, fibrotic scar, histology, and locomotor function recovery were measured, respectively. We demonstrated that DHT administration attenuates neuroinflammation in microglia through inhibition of p38 and p65 pathways. Moreover, DHT reduces microglia and astrocyte accumulation, cord fibrosis and histologic damage. Besides, DHT ameliorates locomotor functional recovery after SCI. DHT is verified to play a neuroprotective role in SCI, which fights against neuroinflammation by inhibition of p38 and p65 pathways. Therefore, Mel is defined as a promising factor in protecting neural tissue after SCI.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Animais , Masculino , Camundongos , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/uso terapêutico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
18.
Spinal Cord Ser Cases ; 10(1): 3, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302448

RESUMO

STUDY DESIGN: A retrospective cross-sectional study. OBJECTIVE: To identify who prescribes outpatient antibiotics among a primary care spinal cord injury (SCI) cohort. SETTING: ICES databases in Ontario, Canada. METHODS: A cohort of individuals with SCI were retrospectively identified using a tested-algorithm and chart reviews in a primary care electronic medical records database. The cohort was linked to a drug dispensing database to obtain outpatient antibiotic prescribing information, and prescriber details were obtained from a physician database. RESULTS: Final cohort included three hundred and twenty individuals with SCI. The average annual number of antibiotic courses dispensed for the SCI cohort was 2.0 ± 6.2. For dispensed antibiotics, 58.9% were prescribed by rostered-primary care practice physicians, compared to 17.9% by emergency and non-rostered primary care physicians, 17.4% by specialists and 6.1% by non-physician prescribers. Those who lived in urban areas and rural areas, compared to those who lived in suburban areas, were more likely to receive antibiotics from emergency and non-rostered primary care physicians than from rostered-primary care practice physicians. CONCLUSION: Although individuals with SCI received outpatient antibiotic prescriptions from multiple sources, physicians from an individual's rostered-primary care practice were the main antibiotic prescribers. As such, interventions to optimize antibiotics use in the SCI population should target the primary care practice.


Assuntos
Antibacterianos , Traumatismos da Medula Espinal , Humanos , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Estudos Transversais , Prescrições de Medicamentos , Padrões de Prática Médica , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/epidemiologia , Atenção Primária à Saúde
19.
Eur Rev Med Pharmacol Sci ; 28(2): 778-788, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305620

RESUMO

OBJECTIVE: The aim of the study was to analyze the apoptosis of neurons and the differences in expression of Bcl-2 and Bax protein in the neurons in the corresponding spinal cord segment after the repair of the tibial nerve (TN) and common peroneal nerve (CPN) in rats. MATERIALS AND METHODS: 126 healthy male Sprague-Dawley (SD) rats aged 7-8 weeks were randomly divided into group A (control group), group B (TN was cut and sutured), and group C (CPN was cut and sutured), with 42 rats in each group. The spinal cord tissues of rats in different groups were stained with hematoxylin-eosin (HE) on the 1st, 3rd, 7th, 14th, 21st, and 28th day after surgery; the number of neurons in anterior horn of spinal cord, axon density (AD), axon passage rate (APR), and recovery rate (RR) of muscle cell cross-sectional area (MCCA) were calculated; and differences in the expression of Bcl-2 and Bax proteins in the three groups of rats were analyzed by immunohistochemistry. RESULTS: The results showed that there was no statistically significant difference in the muscle wet weight (MWW) RR of the three groups of rats on the 14th day after the surgery (p>0.05), and the MWW RRs of rats in groups B and C were higher at the 28th day after surgery in contrast to group A (p<0.05). The number of motor neurons in the anterior horn of spinal cord in group B was higher than that in group C at the 3rd, 7th, 14th, and 21st day after surgery (p<0.05); the MWW RR, MCCA, and CSARR of rats in group B were lower than those in group C (p<0.05); the proximal AD, distal AD, and APR in group B were higher than those of group C on the 14th and 28th day after the surgery (p<0.05); and there were no positive staining results in the spinal cord tissue of rats in group A after staining. The expressions of Bcl-2 and Bax in group B were higher observably than the expressions in group C (p<0.05), which indicated that the recovery ability of TN was stronger than that of the CPN; the expression of Bcl-2 and Bax in TN was notably higher than that of the CPN. CONCLUSIONS: The expression of Bcl-2 and Bax was related to cell apoptosis and nerve regeneration after nerve injury. It provided a reference basis for clinical diagnosis and treatment of peripheral nerves.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Proteína X Associada a bcl-2 , Traumatismos da Medula Espinal/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Nervos Periféricos
20.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302457

RESUMO

Cypin (cytosolic postsynaptic density protein 95 interactor) is the primary guanine deaminase in the central nervous system (CNS), promoting the metabolism of guanine to xanthine, an important reaction in the purine salvage pathway. Activation of the purine salvage pathway leads to the production of uric acid (UA). UA has paradoxical effects, specifically in the context of CNS injury as it confers neuroprotection, but it also promotes pain. Since neuropathic pain is a comorbidity associated with spinal cord injury (SCI), we postulated that small molecule cypin inhibitor B9 treatment could attenuate SCI-induced neuropathic pain, potentially by interfering with UA production. However, we also considered that this treatment could hinder the neuroprotective effects of UA and, in doing so, exacerbate SCI outcomes. To address our hypothesis, we induced a moderate midthoracic contusion SCI in female mice and assessed whether transient intrathecal administration of B9, starting at 1 d postinjury (dpi) until 7 dpi, attenuates mechanical pain in hindlimbs at 3 weeks pi. We also evaluated the effects of B9 on the spontaneous recovery of locomotor function. We found that B9 alleviates mechanical pain but does not affect locomotor function. Importantly, B9 does not exacerbate lesion volume at the epicenter. In accordance with these findings, B9 does not aggravate glutamate-induced excitotoxic death of SC neurons in vitro. Moreover, SCI-induced increased astrocyte reactivity at the glial scar is not altered by B9 treatment. Our data suggest that B9 treatment reduces mechanical pain without exerting major detrimental effects following SCI.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Camundongos , Feminino , Animais , Hiperalgesia/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Purinas , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...